Let we have two tables
Data1.schema:
name:
Company:
Address:
Data2.schema:
Name:
gender:
Age:
Commands:
# delete a column
del Data1[“name”]
# Return all the rows of the ‘name’ column
data1.loc[:, ‘name’]
# Return all the rows from ‘name’ column to ‘Company’ column
data1.loc[:, ‘name’:’Company’]
# Return all the rows from ‘Company’ column to ‘Address’ column
data1.loc[:, ‘Company’:’Address’]
# Return the rows whose Address is “India”
data1.loc[lambda var: var.Address == “India”, : ]
or
data1.loc[data1[“Address”] == “India”, :]
# Return only the name whose Address is “India”
data1.loc[lambda var: var.Address == “India”, ’name’]
# Return only the first five names whose Address is “India”
data1.loc[lambda var: var.Address == “India”, ’name’].head(5)
# Return only the last five names whose Address is “India”
data1.loc[lambda var: var.Address == “India”, ’name’].tail(5)
# Return the list of unique Addresses
data1.Address.unique()
# Return the list of unique Companies
data1.Company.unique()
# Return the list of unique names
data1.name.unique()
# Return the first unique Address
data1.Address.unique()[0]
# Return the total number of unique Addresses
data1.Address.unique().size
# Return the name, age and gender from data2 if the Address is India
t = data1.loc[data1[“Address”] == “India”, “name”].unique()
for x in range(0,t.size)
data[2].loc[data2[“name”]==t[x],:]
No comments:
Post a Comment